
B561 – Advanced Database Concepts – Fall 2011

Assignment 3

Enrique Areyan

Cardinality Estimation:

Let us consider !! to be the total number of students in the Student relation. Then,

!!
50 = !! ∙ 0.02 ≅ !"#$!%# !"#$%& !" !"#!"#$% !"# !"#$%&'"(& ≈ !"#$%& !" !"#$%&"! !" !"

!! ∙ 0.002 ≅ !"!#$!"#$%& !"#$%&'($# !"#ℎ !"#$%& !"#$%#" !ℎ!" 90

0 ≤ !"#$%&"! !" !" !"#ℎ !"#$% !"#$%#" !ℎ!" 90 ≤ !! ∙ 0.002

Thus, we are only looking to retrieve at most 0.2% of all students’ records (in the case all of the
students with grades above 95 are from CS). It is more likely that in the average we’ll retrieve
fewer than this number of records.

Case 1. Hash index on S.dept, Hash index on E.grade, no other index available. (20
points)

Index Scan
S.dept = “CS”

File Access
Student

File Scan
Enrollment

Selection
E.grade>95

Project
E.sid

Join
Hash Join

Project
S.name

In Case 1, the hash index on E.grade is not useful because we have a range condition
on grade. However, the hash index on S.dept is useful, and can help us to quickly
search for students in the CS department.

To join the results I used a Hash Join algorithm. The inner relation is the CS’s Students
and the outer is Enrollment such that grade is > 95. Given the cardinality estimation at
the beginning, it is reasonable to assume that the CS’s Students table fits into the buffer.
The hash will be built on the sid of CS Students table, and for each enrollment record,
the hash function will map E.sid to the appropiate bucket. If there is a match, return the
tuple if not, discard it. For this strategy to be efficient, I assume that there exists a good
hashing function h, that distributes well the sid.

Case 2. Clustered B+ tree index on E.sid, B+tree on S.dept, no other index available.
(20 points)

In Case 2 both indexes are helpful but for different purposes. The index on S.dept
allows us to look for the students in the CS department faster. We join the tuples with an
INLJ, where the inner relation is the enrollment table that has the index on the join
attribute E.sid. For each tuple in the CS student, we compare S.sid with the index on
E.sid to quickly find any corresponding matches. Then we select those tuples with
grades > 95.

Index Scan
S.dept = “CS”

File Access
Student

File Scan
Enrollment

Join
INLJ

Select
E.grade>95

Project
S.name

Case 3. B+tree index on S.dept, B+tree index on E.grade, no other index available. (10
bonus points)

	

	

	

	

	

	

	

	

	

	

	

	

We have B+Tree indexes in the students and enrollment tables, both of which are
useful. B+Tree works for both point and range selection conditions. I first find those
tuple matching the given conditions and then join them using a Hash Join. The inner
table will be the student table, for which a hash will be built on sid. We can assume
that this table fits into the buffer, so the hash join is a reasonable choice. Then, for
each enrollment tuple we will hash E.sid and compare directly with the bucket on the
inner table.

Join
Hash Join

Project
S.name

Index Scan
S.dept = “CS”

File Access

Index Scan
E.grade>95

File Access

